¿Podrían las ondas gravitacionales brillar en luz visible?

Ondas gravitacionales, luz visible

Ilustración artística de un evento de ondas gravitacionales generando una emisión en luz visible. Crédito: LIGO.

Incluso antes del anuncio de la primera detección de ondas gravitacionales gracias a LIGO (Laser Interferometer Gravitational-Wave Observatory) en febrero de este año, científicos teóricos se preguntaban si la energía extrema requerida para producir fuertes ondas gravitacionales también podría producir un destello óptico detectable.

Actualmente, la explicación más ampliamente aceptada para los eventos de ondas gravitacionales es la colisión de agujeros negros. El impacto enviaría ondas gravitacionales a través del espacio a la velocidad de la luz. Gracias a LIGO la existencia de las ondas gravitacionales ha podido ser confirmada, pero se desconoce si podrían estar acompañadas por la emisión de luz (en longitudes ópticas) o radiación a energías más altas como rayos X o gamma. Sigue leyendo

El púlsar más lento del Universo

Remanente supernova RCW103

Imágenes en rayos X del remanente de la supernova RCW103, con el magnetar brillante en el centro. Izquierda: datos de observaciones entre 2011 y 2015. Derecha: datos de la erupción de 2016. Crédito: CSIC.

Un estudio liderado por investigadores del Consejo Superior de Investigaciones Científicas (CSIC) ha identificado el púlsar más lento detectado hasta el momento. Se trata de un magnetar atrapado en los remanentes de una supernova brillante (denominada RCW103), que explotó hace unos 2.000 años y se encuentra a unos 9.000 años-luz de la Tierra. Sigue leyendo

Una salida de los agujeros negros

Agujero negro

Ilustración artística de un agujero negro. Crédito: CSIC.

Uno de los grandes problemas que se plantean cuando se estudia un agujero negro es que las leyes de la física dejan de tener sentido en sus regiones más profundas. Ese lugar, en el que se concentran grandes cantidades de masa y energía, recibe el nombre de “singularidad”, y en él el espacio-tiempo se curva hasta el infinito destruyendo toda la materia.

O tal vez no, según se desprende del trabajo presentado por un grupo de científicos del Instituto de Física Corpuscular (IFIC), centro mixto del Consejo Superior de Investigaciones Científicas (CSIC) y la Universitat de València. Sigue leyendo

Un “milagro cósmico”: Se ha observado indicios de un agujero negro formado por colapso directo

Simulación de la formación de un agujero negro por colapso directo

Imagen basada en la simulación computacional del ambiente cosmológico en el que gas primordial sufre colapso directo y forma un agujero negro.
Crédito: Aaron Smith/TACC/UT-Austin.

Se han encontrado agujeros negros súper masivos muy antiguos que, se estima, se formaron cuando el universo era aún muy joven. Esto ha sido desconcertante para los investigadores.

Los astrónomos han encontrado un nuevo conjunto de condiciones únicas que sólo existieron 50 millones de años después del Big Bang y que se cree que permitieron la formación de estos agujeros negros monstruosos. Una inusual fuente de radiación intensa creó los que se han denominado “agujeros negros de colapso directo”. Sigue leyendo

Sorprendente estructura gigante con forma de anillo en el universo

Distribución de GRB

Mapa de la distribución de GRBs en un cielo de 7 mil millones de años, marcados con los puntos azules. Crédito: L. Balazs

Cinco mil millones de años luz es una distancia casi inconcebible, incluso en la escala cósmica. Para ilustrar de mejor manera la extensión de esta cantidad física, basta con decir que se necesitarían 35 mil galaxias del tamaño de la Vía Láctea para cubrir esta distancia. Gracias a un sorprendente descubrimiento de un equipo de astrónomos húngaros y estadounidenses, ahora sabemos que una estructura así de grande realmente existe en el universo observable.

Sigue leyendo

Un agujero negro gigantesco fue encontrado en un lugar poco probable

Agujero negro supermasivo

Esta imagen simulada por computadora muestra un agujero negro supermasivo en el corazón de una galaxia. La región negra en el centro representa el horizonte de eventos de agujero negro donde la luz no puede escapar del agarre gravitatorio del objeto masivo. La poderosa gravedad del agujero negro distorsiona el espacio al rededor del mismo como en una casa de los espejos. Crédito: NASA/ESA/D. Coe, J. Anderson, y R. van der Marel (STScI)

Astrónomos han encontrado un agujero negro supermasivo con una masa equivalente a 17 mil millones de soles (valor cercano al record actual), en un lugar hasta ahora improbable del espacio, en el centro de una galaxia en un área poco poblada del universo. Las observaciones realizadas por el telescopio Hubble de la NASA y el telescopio Gemini en Hawái podrían indicar que estos objetos “monstruosos” podrían ser más comunes de lo que se pensaba.

Hasta ahora los agujeros negros supermasivos más grandes -aquellos con masas cercanas o equivalentes a 10 mil millones de veces la masa de nuestro Sol- se han encontrado en núcleos de galaxias grandes en regiones del universo “llenas” de otras galaxias de gran tamaño. De hecho, el record actual “inclina la balanza” hacia las 21 mil millones de masas solares y se encuentra en el poblado Cúmulo de Coma, que consiste en un grupo de cerca de 1,000 galaxias.

Sigue leyendo

Los rayos cósmicos podrían ayudar a darle su color a la Gran Mancha Roja de Júpiter

Gran Mancha Roja de Jupiter

Gran Mancha Roja de Júpiter. Crédito: NASA/JPL.

El persistente remolino que caracteriza la atmósfera de Júpiter, que es lo suficientemente grande como para “tragarse” un planeta del tamaño de la Tierra, y que a su vez ha sido apodado como la Gran Mancha Roja, podría obtener su inconfundible color de los compuestos de azufre generados cuando los rayos cósmicos y la luz ultravioleta descomponen una sustancia presente en las nubes del planeta, como sugiere una investigación reciente.

Dicha sustancia, poco estudiada, se denomina hidrosulfuro de amonio (NH4SH) y es típicamente un sólido incoloro que a las condiciones prevalentes de la atmósfera joviana se encontraría formando el núcleo de granos de hielo o un recubrimiento sobre otras partículas. Sigue leyendo

Ondas Gravitacionales: Implicaciones del descubrimiento para la ciencia y para la humanidad

Ondas gravitacionales

Simulación informática de ondas gravitacionales durante una colisión de dos agujeros negros. Crédito: MPI for Gravitational Physics/W.Benger-Zib.

Miles de personas en todo el mundo celebraron el pasado 11 de febrero el anuncio de la primera detección directa de las ondas gravitacionales – ondulaciones en el tejido del espacio-tiempo cuya existencia fue propuesta por primera vez por Albert Einstein, en 1916.

Las ondas tienen su origen en dos agujeros negros en rotación mutua, cada vez a menor distancia, hasta que finalmente colisionaron. El recientemente renovado “Large Interferometer Gravitational Wave Observatory” (LIGO) capturó la señal el 14 de septiembre de 2015. No todos los descubrimientos científicos reciben tantísima atención, de modo que, ¿cuál es exactamente la clave de éste, y cuál es el futuro de LIGO ahora que ha detectado estas elusivas ondas? Sigue leyendo

Experimento LIGO confirma la primera detección de ondas gravitacionales

Ondas gravitacionales

Ondas gravitacionales. Crédito: R. Hurt, Caltech/JPL.

Por primera vez, los científicos han observado ondulaciones en el tejido del espacio-tiempo, llamadas ondas gravitacionales, llegando a la Tierra procedentes de un evento catastrófico en el universo lejano. Esto confirma una importante predicción de la teoría de la relatividad general de Albert Einstein de 1915 y abre una nueva ventana sin precedentes en el cosmos. Sigue leyendo

Miden con precisión un objeto situado alrededor de un agujero negro

Sistema lente Q2237+0305

Imagen del sistema lente Q2237+0305. La galaxia espiral hace de lente gravitatoria, y cerca del núcleo pueden verse las cuatro imágenes del quásar producidas por este efecto. Crédito: Mediavilla y colaboradores.

Investigadores de las universidades de Granada, Valencia y Cadiz, junto al Instituto de Astrofísica de Canarias, han logrado medir el borde interno del disco de materia que orbita alrededor de un agujero negro supermasivo en un quásar, un objeto del tamaño del Sistema Solar que emite tanta energía como una galaxia entera.

Se trata de la medida más precisa lograda hasta la fecha de un objeto tan pequeño y tan lejano, y obtenerla ha sido posible gracias al conocido como efecto de microlente gravitatoria, provocado por las estrellas de una galaxia que se encuentra entre la tierra y el quásar, y que puede magnificar regiones diminutas dentro del quásar. Sigue leyendo

XMM-Newton descubre filamentos cósmicos cerca de un gran cúmulo

Cúmulo Abell 2744

El cúmulo de galaxias Abell 2744. Crédito: ESA/XMM-Newton (rayos X); ESO/WFI (óptico); NASA/ESA y CFHT (materia oscura).

El observatorio espacial XMM-Newton ha descubierto tres inmensos filamentos por los que fluye gas caliente hacia un gran cúmulo de galaxias, revelando parte del esqueleto cósmico que permea el Universo.

Las galaxias tienden a agruparse formando grandes aglomerados conocidos como cúmulos, que son las estructuras cósmicas más grandes cohesionadas por la fuerza de la gravedad. Estas agrupaciones contienen galaxias, gas caliente y una gran cantidad de materia oscura.

A gran escala, las galaxias y los cúmulos parecen estar enlazados por una gigantesca red de filamentos cósmicos, en cuyos nudos de mayor densidad se sitúan las estructuras más masivas. Sigue leyendo

Detectada por primera vez la materia escondida alrededor de las galaxias

CMB, galaxias, Planck

Ilustración de cómo se modifica el CMB cuando los fotones atraviesan nubes de gas ionizado alrededor de galaxias. Azul indica que su intensidad aumenta y rojo que disminuye. Crédito: Carlos Hernández Monteagudo/CEFCA.

Utilizando las mejores medidas disponibles del fondo cósmico de microondas (CMB) obtenidas con el satélite Planck, un equipo de investigadores, liderado por Carlos Hernández Monteagudo del Centro de Estudios de Física del Cosmos de Aragón (CEFCA, Teruel), ha conseguido detectar por primera vez grandes cantidades de materia bariónica “escondida” alrededor de galaxias de tamaño medio en el universo local.

El estudio arroja nueva luz sobre el problema de la denominada materia bariónica “perdida” y contribuye a la comprensión de la distribución de este tipo de materia en galaxias, grupos y cúmulos de galaxias, lo que constituye un ingrediente esencial para saber cómo se forman y evolucionan estas estructuras. Sigue leyendo

La imagen más detallada del universo lejano

Anillo SDP.81

La galaxia SDP.81 hace de lupa y aparece como un anillo de Einstein casi perfecto. Crédito: ALMA/Y. Tamura.

La campaña de base larga de ALMA ha producido algunas observaciones sorprendentes, proporcionando información detallada sin precedentes sobre los habitantes del universo cercano y lejano. La campaña de observaciones, realizada a finales de 2014, tenía como objetivo una galaxia lejana conocida como SDP.81. La luz procedente de esta galaxia es víctima de un efecto cósmico conocido como lentes gravitacionales. Una gran galaxia que se encuentra entre SDP.81 y ALMA actúa como una lupa, deformando la luz de la galaxia más distante y creando un ejemplo casi perfecto de un fenómeno conocido como un anillo de Einstein. Sigue leyendo

Aclarando el complejo proceso de formación de estrellas gigantes

IRAS 16547-4247

Ilustración artística de la distribución del gas ambiente que rodea IRAS 16547-4247. Crédito: ALMA.

Las estrellas que vemos brillar de noche tienen masas que varían mucho. Algunas tienen menos de 1/10 de la masa de nuestro Sol, mientras que otras tienen masas equivalentes a más de 100 masas solares. Uno de los misterios más importantes e intrigantes que la astronomía todavía no ha sido capaz de develar por qué se forman estrellas tan distintas y qué factores determinan las diferentes masas que pueden tener. Estas preguntas no pueden responderse sin hacer observaciones detalladas de varias estrellas con distintas masas durante su formación. Sigue leyendo

ALMA revela el intenso campo magnético próximo a agujero negro supermasivo

Agujero negro supermasivo en centro de una galaxia

Ilustración artística del entorno de un agujero negro supermasivo en el centro de una galaxia. Crédito: ESO/L. Calçada.

Los agujeros negros supermasivos, a menudo con masas de miles de millones de veces la del Sol, están situados en el corazón de casi todas las galaxias del Universo. Estos agujeros negros pueden acretar enormes cantidades de materia, la cual está en forma de disco circundante. Mientras que la mayor parte de esta materia cae al agujero negro, cierta cantidad puede escapar momentos antes de la captura, siendo lanzada hacia el espacio a velocidades cercanas a la de la luz como parte de un chorro de plasma. No se comprende muy bien cómo ocurre este fenómeno, aunque se cree que los fuertes campos magnéticos, que actúan muy cerca del horizonte de sucesos, desempeñan un papel crucial en este proceso, ayudando a la materia a escapar de las fauces abiertas de la oscuridad. Sigue leyendo